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Torsional guided waves are often used to detect the defects in a hollow cylinder.

To realize the excitation of the torsional guided waves with high efficiency, the transient

vibration responses of finite, semi-infinite and infinite hollow cylinders to external

torsional forces must be clarified theoretically. In this study, the method of

solutions derived by this method are not only explicit but also concise. Furthermore, the

analytical solution of the transient torsional vibration of the finite hollow cylinder is

numerically evaluated. The results obtained agree well with those simulated by the

finite element method.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Ultrasonic guided waves have a great potential to be employed as an NDE technique for pipelines because they can
inspect an area simultaneously without detaching all the insulations from the outer wall of pipe. According to the study of
Gazis [1], we know that there are numerous torsional, longitudinal and flexual guided wave modes propagating in a hollow
cylinder axially. And they are designated by the symbols Tð0;mÞ, Lð0;mÞ and Fðn;mÞ ðn;m ¼ 1;2; . . .Þ, respectively [2,3].
Generally, some single pure mode is intended to be excited for defect detection. The waves reflected from the defect may
be too complex to analyze if multi-guided wave modes are excited. The usage of Lð0;2Þmode was suggested by Lowe et al.
[4–6] because it is the fastest mode in a weakly dispersive region of frequency and sensitive to circumferential defects.
Unfortunately, this mode is insensitive to axial defects. In recent years, Demma et al. [7] and Kwun et al. [8] suggested the
usage of the torsional wave mode Tð0;1Þ which is more sensitive to the axial defects than the Lð0;2Þ mode.

Though many apparatus have been developed to excite torsional wave modes [9,10], the exact analytical solution of the
transient vibration responses of the hollow cylinder to external torsional forces has not been obtained yet. Soldatos [11]
pointed out that exact dynamic analyses of elastic solids can provide valuable, accurate information in cases that, dealing
with certain important mechanical properties of them, corresponding predictions based on approximate modelings are not
satisfactory. Generally, two fundamental methods, the integral transform and eigenfunction expansion techniques, are
employed to study the exact transient responses of the elastic solids. Folk et al. [12] used a double integral transform
method to solve a problem of longitudinal strain propagation produced by the sudden application of a pressure to the end
of a semi-infinite solid circular cylinder. Pan et al. [13] solved the three-dimensional transient response problem of an
infinite solid cylinder by the method of integral transform. The response solutions obtained by the integral transform
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technique are complex and difficult for numerical evaluation. Though the problems of transient torsional responses of
semi-infinite and infinite hollow cylinders can also be solved by the technique of integral transform, the eigenfunction
expansion method is employed to deal with the above problems in this study. The method of eigenfunction expansion for
three-dimensional elastodynamic problems with traction and displacement boundary conditions was developed by
Reismann [14]. And it was described in detail by Eringen and Suhubi [15]. Tang and Cheng [16] extended it to deal
with elastodynamic problems with mixed boundary conditions. Pao [17] thought that the eigenfunction expansion
method is one of the most elegant methods for solving elastodynamic problems because the formula obtained by it is not
only concise but also particularly suitable for analyzing the influence of body and surface forces on the transient
elastodynamic responses. Tang and Cheng [18] employed the eigenfunction expansion method to obtain the three-
dimensional transient responses solution of the finite hollow cylinder with rigid-smooth end boundary conditions. Then
the three-dimensional transient response solution of the infinite one is derived based on the above solution. Note that the
rigid-smooth boundary conditions are not of great practical importance. Up to now, the exact analytical solutions of the
three-dimensional transient responses of the finite and semi-infinite hollow cylinders to arbitrary external forces have not
been obtained.

The successful application of the eigenfunction expansion method in the elastodynamic problems depends on the
finding of corresponding eigenfunctions. In this study, the torsional vibration eigenfunctions of a finite hollow cylinder
with traction-free end and lateral boundaries are derived by the technique of variable separation. Then the eigenfunction
expansion method is introduced to obtain the exact transient response of it to torsional surface and body forces.
Furthermore, the transient torsional response solutions of semi-infinite and infinite hollow cylinders are derived based on
the above solution. And the transient torsional response solution of the finite hollow cylinder is numerically evaluated.
The results obtained agree very well with those simulated by the finite element method.

2. Transient vibration responses of a finite hollow cylinder, the ends of which are located at z ¼ 0 and 2l, to axisymmetric
torsional forces

2.1. Statement of the problem

When a finite hollow cylinder, the ends of which are located at z ¼ 0 and 2l, is subjected to homogeneous axisymmetric
torsional loads, as shown in Fig. 1, longitudinal and flexual waves cannot be excited, and its motion is governed by
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where cT is the equivoluminal wave velocity, f is the density of the body force, a and b are inner and outer radii,
respectively, and uy is the circumferential displacement. The solution of equation (1) must satisfy the boundary conditions
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szyjz¼2l ¼ m @uy
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¼ srðr; tÞ; r 2 ½a; b�; (5)

where sry and szy are two stress components, m is Lamé’s elastic constant, si and so are the densities of the forces applied on
the inner and outer surfaces of the hollow cylinder, respectively, and sl and sr are the densities of the forces applied on the
Fig. 1. A finite hollow cylinder with inner radius a and outer radius b, two ends of which are located at z ¼ 0 and 2l. It is subjected to the torsional body

force with density f ðr; z; tÞ. The left and right end boundaries of it are subjected to torsional surface forces slðr; tÞ and srðr; tÞ, respectively. The inner and

outer lateral boundaries of it are subjected to torsional surface forces siðz; tÞ and soðz; tÞ, respectively.
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left and right ends of it, respectively. Furthermore, the solution of equation (1) must satisfy the initial conditions

uyjt¼0 ¼ 0;
@uy

@t

����
t¼0

¼ 0; r 2 ½a; b�; z 2 ½0;2l�: (6)

2.2. Torsional vibration eigenfunctions

The eigenvalue problem corresponding to Eqs. (1)–(6) is formulated as
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Setting

uy
mk ¼ RmkðrÞZmkðzÞ; (10)

then substituting Eq. (10) into Eq. (7), we have
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where m and k denote the orders of discrete angular frequency o and wavenumber x, respectively. Solving Eq. (11),
we obtain

ZmkðzÞ ¼ Amkcosxmkzþ Bmksinxmkz; (13)

where Amk and Bmk are arbitrary constants. Now, we discuss the solution of equation (12) for three different cases.

Case I: o2
mk=c2

Tox2
mk. The solution of Eq. (12) is

RmkðrÞ ¼ CmkI1ðbmkrÞ þ DmkK1ðbmkrÞ; (14)

where

b2
mk ¼ x2

mk �
o2

mk

c2
T

; (15)

Cmk and Dmk are arbitrary constants, I1 is the first-order modified Bessel function of first kind, and K1 is the first-order
modified Bessel function of second kind. Substituting Eq. (14) into Eq. (8), we obtain
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CmkI2ðbaÞ �

1
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DmkK2ðbaÞ ¼ 0 (16)

and

�
1

b
CmkI2ðbbÞ �

1

b
DmkK2ðbbÞ ¼ 0: (17)

Eqs. (16) and (17) form a system of equations with variables Cmk and Dmk. The coefficient determinant of it is

D ¼
1

ab

I2ðbaÞ K2ðbaÞ

I2ðbbÞ K2ðbbÞ

�����
����� ¼ 1

ab
½I2ðbaÞK2ðbbÞ � I2ðbbÞK2ðbaÞ�: (18)

It is well known that I2ðxÞ, i.e., the second-order modified Bessel function of first kind, is a monotonic increasing function,
K2ðxÞ, i.e., the second-order modified Bessel function of second kind, is a monotonic decreasing function, and both of them
are positive when x40. Then we have

0oI2ðbaÞoI2ðbbÞ (19)

and

K2ðbaÞ4K2ðbbÞ40; (20)
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because bb4ba40. Eqs. (19) and (20) lead to

I2ðbaÞK2ðbbÞ � I2ðbbÞK2ðbaÞo0: (21)

We know from Eqs. (18) and (21) that

Do0; (22)

which means that the system of equations formed by Eqs. (16) and (17) has no non-zero solutions, i.e.,

Cmk ¼ 0; Dmk ¼ 0: (23)

Case II: o2
mk=c2

T ¼ x2
mk. Eq. (12) becomes an Euler equation and its solution is
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r
þ Dmkr: (24)

Substitution of Eq. (24) into Eq. (8) leads to
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Then we obtain after substituting Eq. (25) into Eq. (24) that
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Case III: o2
mk=c2
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J1 and Y1 are the first-order Bessel and Neumann functions, respectively.
Substituting Eq. (13) into Eq. (10), then into Eq. (9) and setting z ¼ 0, we obtain

Bmk ¼ 0: (29)

Then we know from Eqs. (10), (13), (26)–(29) that
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Substituting Eq. (30) into Eq. (9) and setting z ¼ 2l, we have

xmk ¼
kp
2l
; k ¼ 1;2;3; . . . : (31)

Eq. (30) is just the torsional vibration eigenfunctions of the finite hollow cylinder, the ends of which are located at z ¼ 0
and 2l. And it is easy to prove that the eigenfunctions form an orthogonal set [15,19], then we haveZ b

a

Z 2l

0
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mkuy
ijr dr dz ¼

0; mai or kaj;

Mmk; m ¼ i and k ¼ j;

(
(32)

where r is the density of the cylinder, and

Mmk ¼

Z b

a

Z 2l

0
r½uy

mkðr; zÞ�
2r dr dz: (33)

2.3. Method of eigenfunction expansion

The method of eigenfunction expansion for elastodynamic problems has been discussed in detail by Eringen and Suhubi
[15]. And it is reviewed briefly here. The motion of an isotropic elastic body of volume O enclosed by a surface S ¼ S1 þS2

is governed by

ðlþ mÞrr � uðx; tÞ þ mr2uðx; tÞ þ rfðx; tÞ ¼ r €uðx; tÞ; x in O; (34)

and boundary conditions

uðx; tÞ ¼ u; x on S1; (35)

rðx; tÞ � n ¼ T; x on S2; (36)
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and initial conditions

uðx;0Þ ¼ u0; x in O; (37)

_uðx;0Þ ¼ v0; x in O; (38)

where f is body force, r is stress tensor, u is displacement vector, r is density, l and m are Lamé’s constants, u0, v0 and u, T
are prescribed quantities.

The eigenvalue problem corresponding to Eqs. (34)–(36) can be formulated as

ðlþ mÞrr � uðmÞðxÞ þ mr2uðmÞðxÞ þ ro2
muðmÞðxÞ ¼ 0; x in O; (39)

uðmÞðxÞ ¼ 0; x on S1; (40)

and

rðmÞðxÞ � n ¼ 0; x on S2; (41)

where uðmÞ is the eigenfunctions and rðmÞ is the corresponding stress tensor. The eigenvalues o2
m are real and non-

negative [15,17]. For self-adjoint boundary conditions, the eigenfunctions form an orthogonal set with the weighting
function r, i.e., Z

O
ruðmÞ � uðnÞ dV ¼ 0; man; (42)

and the norm of the eigenfunctions is given by

MðmÞ ¼

Z
O
ruðmÞ � uðnÞ dV : (43)

If the initial displacement and velocity vectors, u0 and v0, are equal to zero, the solution to Eqs. (34)–(38) is
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2.4. Transient torsional vibration response of a finite hollow cylinder

According to the method of eigenfunction expansion presented by Reismann [14,15], we know the transient torsional
vibration response of the above finite hollow cylinder can be expressed as
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3. Transient torsional vibration responses of a semi-infinite hollow cylinder to axisymmetric torsional forces

The dynamic response problem of a semi-infinite hollow cylinder subjected to external axisymmetric torsional forces,
as shown in Fig. 2, can be formulated as the wave equation
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Fig. 2. A semi-finite hollow cylinder with inner radius a and outer radius b. It is subjected to the torsional body force with density f ðr; z; tÞ. The end

boundary of it is subjected to torsional surface force slðr; tÞ. The inner and outer lateral boundaries of it are subjected to torsional surface forces siðz; tÞ and

soðz; tÞ, respectively.
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szyjz¼0 ¼ m @uy

@z

����
z¼0

¼ slðr; tÞ; r 2 ½a; b�; (51)

and the initial conditions

uyjt¼0 ¼ 0;
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¼ 0; r 2 ½a; b�; z 2 ½0;1�: (52)

The solution of equations (48)–(52) can be derived from Eq. (46). The derivation is as follows. We can obtain from Eq. (33)
after invoking Eqs. (30) and (31) that

Mmk ¼ l
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a
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2r dr; (53)

where RmkðrÞ is shown as Eqs. (26) and (27). Setting
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It is easy to know from Eq. (31) that the interval between two successive wavenumber is
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p
2l
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Then we can derive from Eqs. (55) and (56) that
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Substitution of Eq. (57) into Eq. (46) gives
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As the hollow cylinder is of semi-infinite length, namely, l-1, interval between two successive roots Dxmk approaches
zero. Therefore, in the limit of l approaching infinity, the summation over the index k in Eq. (58) will be replaced by the
integral over the continuous eigenvalue xm, then we have
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Note that the term corresponding to the right end boundary condition in Eq. (47), i.e.,Z b

a
srðr; tÞuy

mkðr;2lÞr dr (61)

should be omitted when l-1. Eqs. (59) and (60) are just the exact solutions of the transient torsional vibration response of
the semi-infinite hollow cylinder shown in Fig. 2.

4. Transient vibration responses of the finite hollow cylinder, the ends of which are located at z ¼ �l and l, to
axisymmetric torsional forces

The transient torsional vibration problem of the finite hollow cylinder, the ends of which are located at z ¼ 0 and 2l,
has been solved in Section 2. In this section, we will derive the transient torsional response solutions of the finite hollow
cylinder, the ends of which are located at z ¼ �l and l. Though the problem studied in this section are same to that studied
in Section 2 from the view of physics, the solutions obtained have different mathematical forms. And the transient
torsional response solution of an infinite hollow cylinder can be derived from the results obtained in this section but
cannot be derived from those given in Section 2.

Now the motion of the finite hollow cylinder, as shown in Fig. 3, is governed by the elastodynamic equation
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4.1. Torsional vibration eigenfunctions

The solutions to Eqs. (62)–(67) are

uyð1Þ
mk ðr; zÞ ¼ Rð1ÞmkðrÞcosxmkz; (68)

where

Rð1ÞmkðrÞ ¼
Dmkr; o2

mk=c2
T ¼ x2

mk;

CmkJ1ðbmkrÞ þ DmkY1ðbmkrÞ; o2
mk=c2

T4x2
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8<
: (69)
Fig. 3. A finite hollow cylinder with inner radius a and outer radius b, two ends of which are located at z ¼ �l and l. It is subjected to the torsional body

force with density f ðr; z; tÞ. The left and right end boundaries of it are subjected to torsional surface forces slðr; tÞ and srðr; tÞ, respectively. The inner and

outer lateral boundaries of it are subjected to torsional surface forces siðz; tÞ and soðz; tÞ, respectively.
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xmk ¼
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l
; k ¼ 1;2;3; . . . (70)
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bmk in Eqs. (69) and (72) is shown as Eq. (28). It is easy to prove that the eigenfunctions uyð1Þ
mk and uyð2Þ

mk , as shown in Eq. (68)
or (71), form an orthogonal set [15,19], then we have
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4.2. Transient torsional vibration responses

According to the method of eigenfunction expansion presented by Reismann [14], we know the transient solution
which satisfies Eqs. (62)–(67) can be expressed as
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X
mk
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5. Transient torsional vibration responses of an infinite hollow cylinder to axisymmetric torsional forces

Fig. 4 is an infinite hollow cylinder subjected to external torsional forces. The dynamic response problem of it can be
formulated as

1

c2
T

@2uy

@t2
� f ðr; z; tÞ ¼

@2uy

@r2
þ

1

r

@uy

@r
�

uy

r2
þ
@2uy

@z2
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Fig. 4. A finite hollow cylinder with inner radius a and outer radius b. It is subjected to the torsional body force with density f ðr; z; tÞ. The inner and outer

lateral boundaries of it are subjected to torsional surface forces siðz; tÞ and soðz; tÞ, respectively.



ARTICLE IN PRESS

L.G. Tang, X.M. Xu / Journal of Sound and Vibration 329 (2010) 1089–1100 1097
under the boundary conditions
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¼ soðz; tÞ; z 2 ð�1;þ1Þ; (80)

and initial conditions

uyjt¼0 ¼ 0;
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����
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¼ 0; r 2 ½a; b�; z 2 ð�1;þ1Þ: (81)

We can derived from Eqs. (68)–(73) and (75) that

MðpÞmk ¼
p
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M1ðpÞmk ; p ¼ 1;2; (82)

where
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(83)

and
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Substituting Eq. (82) into Eqs. (76) and (77), then repeating the derivation in Section 3, we have
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where
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Note that the terms corresponding to the end boundary conditions in Eq. (77), i.e.,Z b

a
slðr; tÞu
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mk ðr;�lÞr dr and
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a
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mk ðr; lÞr dr (87)

should be omitted when l-1. Eqs. (85) and (86) are just the transient torsional response solutions of the infinite hollow
cylinder.

6. Numerical examples

Here, we consider the excitation and propagation of the torsional waves in a finite steel hollow cylinder with length
2l ¼ 0:3 m, outer radius b ¼ 0:04 m and wall thickness h ¼ 0:02 m, as shown in Fig. 1. The material parameters of the
hollow cylinder are density r ¼ 7:8� 103 kg=m3, Young’s module E ¼ 215:04 GPa and Poisson coefficient g ¼ 0:28. The left
end surface force density is

slðr; tÞ ¼
G1T1ðtÞ for r 2 aþ

h
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3

� �
;
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8><
>: (88)

no external force is applied on the right end surface, the inner lateral surface density is

siðz; tÞ ¼ 0; z 2 ½0;2l�; (89)

the outer lateral surface density is

soðz; tÞ ¼
G2T2ðtÞ for z 2 ½0:12 m;0:124 m�;

0 otherwise;

(
(90)

the body force density is

f ðr; z; tÞ ¼
G3T3ðtÞ for r 2 aþ
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0 otherwise;
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>: (91)
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where G1 ¼ 1:0, G2 ¼ 1:0, G3 ¼ 0:05,

TkðtÞ ¼
sinð2pfktÞ 0:5� 0:5cos

2pt
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>: ðk ¼ 1;2;3Þ (92)

and

fk ¼

100 kHz; k ¼ 1;

120 kHz; k ¼ 2;

60 kHz; k ¼ 3:

8><
>: (93)

Fig. 5 is the group velocity dispersion curves of first four-order torsional wave modes. Obviously, only modes Tð0;1Þ and
Tð0;2Þ can be excited by the above surface forces, and only mode Tð0;1Þ can be excited by the above body force. The general
purpose commercial finite element software called Abaqus is used. Eight-noded three-dimensional solid elements are
employed in the FE simulation. The element size along z-axis is 1:0� 10�3 m. And the hollow cylinder is radially divided
into 18 uniform parts and circumferentially divided into 270 uniform parts. The time-step is 0:04ms in the explicit
algorithm. Figs. 6, 7 and 8 show the transient torsional displacements of outer surface at z ¼ 0:2 m, which are excited by
slðr; tÞ, soðz; tÞ and f ðr; z; tÞ, respectively. The solid lines in them are computed from the analytical solution, i.e., Eq. (59), while
the black dots are simulated by the finite element method (FEM). Fig. 9 shows the total transient torsional displacement
waveforms obtained by the two different methods mentioned above. Apparently, the results computed from the analytical
solution agree well with those simulated by FEM.
Fig. 5. The group velocity dispersion curves of first four branches of Tð0;mÞ.

Fig. 6. The transient displacement of the outer surface at z ¼ 0:2 m, which is exited by the torsional end surface force. The solid line is computed from the

analytical solution. The black dot is simulated by the FEM.



ARTICLE IN PRESS

Fig. 7. The transient displacement of the outer surface at z ¼ 0:2 m, which is exited by the torsional outer lateral surface force. The solid line is computed

from the analytical solution. The black dot is simulated by the FEM.

Fig. 8. The transient displacement of the outer surface at z ¼ 0:2 m, which is exited by the torsional body force. The solid line is computed from the

analytical solution. The black dot is simulated by the FEM.

Fig. 9. The total transient displacement of the outer surface at z ¼ 0:2 m. The solid line is computed from the analytical solution. The black dot is

simulated by the FEM.
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7. Conclusions

Note that two kinds of transient torsional response solutions of the finite hollow cylinder with different eigenfunctions
are presented in Sections 2 and 4. Apparently, the solution presented in Section 2 is more suitable for numerical
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computation. The transient torsional response solutions of the semi-infinite and infinite hollow cylinders can be obtained
based on the results presented in Sections 2 and 4, respectively.

Compared to the integral transform technique and the finite element method, the eigenfunction expansion method has
two main advantages: (1) it is easy to numerically evaluate the solution derived by the eigenfunction expansion method,
and (2) the contribution of each guided mode to total responses can be easily analyzed. Folk et al. [12] pointed out that the
solution derived by the integral transform technique is too complex to evaluate it by simple means. And it is worth
mentioning that on our AMD Athlon 3800 PC, the finite element method took over 30 h to produce the results shown in
Figs. 6–9, while the eigenfunction expansion method used less than 15 min to complete the computation. But it should be
admitted that the interaction between the guided waves and the defects in elastic guides can be analyzed by the finite
element method, but the eigenfunction expansion method cannot do this.
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